Pentland, A. (2014). Social Physics: How Good Ideas Spread-The Lessons from a New Science. Penguin.
“Most people think in relatively static terms…. I think in terms of social physics: growth processes within networks” p. ix
“…research program to develop a rigorous intellectual framework that extends current individual-centric economic and policy thinking by including social interactions. It posits social learning and social pressure as primary forces that drive the evolution of culture and govern much of the hyperconnected world.” p. ix
“But as we know all know, academic papers are, well, academic. So I’ve also helped… creating half a dozen start-up companies…” p. x
Chapter 1: From ideas to Actions
“Where do new ideas come from? How do they get put into action? How can we create social structures that are cooperative, productive, and creative?” p. 1
“Suddenly our society has become a combination of humans and technology that has powers and weaknesses different from any we have ever lived in before.” p. 2
“Adam Smith himself understood that it is our social fabric… In his book, Theory of Moral Sentiments he argued that it was human nature to exchange not only goods but also ideas, assistance, and favors our of sympathy.” p. 3
“The goal of this book is to develop a social physics that extends economic and political thinking by including not only competitive forces byt also exchanges of ideas, information, social pressure, and social status in order to fully explain human behavior.” pp. 3-4.
“Social physics is a quantitative social science that describes reliable, mathematical connections between information and idea flow on the one hand and people’s behavior on the other. Social physics helps us understand how ideas flow from person to person through the mechanism of social learning and how this flow of ideas ends up shaping the norms, productivity, and creative output of our companies, cities, and society.” p. 4.
“Just as the goal of traditional physics is to understand how the flow of energy translates into changes in motion, social physics seeks to understand how the flow of ideas and information translates into changes in behavior.” p. 5
“The ultimate test of a practical theory, of course, is whether or not it can be used to shape outcomes… create better companies, cities, and social institutions.” p. 7
“The engine that drives social physics is big data… by analyzing patterns of human experience and idea exchange within the digital bread crumbs we all leave behind us as we move through the world… These data tell the story of everyday life by recording what each of us has chosen to do…. reality mining…” p. 8
“During the past decade, my students and I have developed the ability to build and deploy such living labs, measuring entire social organisms – groups, companies, and whole communities – on a second-by-second basis for up to years at a time.” p. 9
“To accomplish this I have developed legal and software tools to protect the rights and privacy of the people in the labs to insure they are fully informed about what is happening to their data and that they maintain the right to opt out at any time.” p. 9
“… enabling us to build some of the first practical ‘socioscopes.’ These new tools give a view of life in all its complexity…” p. 10
“Figure 1: Qualitative overview of social science observations and experiments, with the horizontal axis showing data collection duration (duration of observation from minutes to years) and vertical axis showing richness of the information collected (measurements per person per minute from one to hundreds).” p 11.
“Just a brief examination of Figure 1 makes it easy to see that these social physics data sets are many orders of magnitude richer than previous social science data sets.” p. 12
“In support of this book, I have placed several of the world’s largest and most detailed living lan data sets onto the Web.” p. 13
“Friends and Family: Roughly eighteen months of data from a small community of young families…” p. 13
“Social Evolution: Nine months of data from a university dormitory…” p. 13
“Reality Mining: Nine months of data from graduate students at two university laboratories…” p. 13
“Badge Data Set: One month within a white-collar workplace…” p. 14
“Data for Development… These data are now all available from http://www.d4d.orange.com/home.” p. 14
“Idea flow within social networks, and how it can be separated into exploration (finding new ideas/strategies) and engagement (getting everyone to coordinate their behavior).” p. 15
“Social learning, which is how new ideas become habits, and how learning can be accelerated and shaped by social pressure.” p. 15
“Social physics also shares some surface resemblance to other academic domains, such as cognitive sciences…. rather than focus on individual thoughts and emotions, social physics focuses on social learning as the major driver of habits and norms.” p. 16
“The social physics that is emerging brings together branches of economics, sociology, and psychology, along with network, complexity, decision, and ecology sciences and fuses them together using big data.” p. 17
“It shows how we can begin to build a society that is better at avoiding market crashes, ethnic and religious violence, political stalemates, widespread corruption, and dangerous concentration of power. The first steps are to being setting scientific, reliable policies for growth and innovation, and to institute information and legal architectures for the protection of privacy and public transparency…. This vision of a data-driven society implicitly assumes that the data will not be abused. … I have called this the New Deal on Data … ” p. 17
“While these changes will help protect citizens from companies, they do little to protect against the government itself.” p. 18
“Language – engagement, exploration, idea, idea flow, information, interaction, social influence, social learning, social network incentive, social norms, social pressure, society, strategy, trust, value.” p. 19-21
Part One – Social Physics
Chapter 2 – Exploration
“The most consistently creative and insightful people are explorers. They spend an enormous amount of time seeking out new people and different ideas, without necessarily trying very hard to find the ‘best’ people or ‘best’ ideas. Instead, they seek out people with ‘different’ views and ‘different’ ideas.” p. 26
“The main work of science, art, or leadership is the same: developing a compelling story about the world and then deciding to test it against reality.” p. 27
“Social Learning – Harvard Business Review article ‘Beyond the Echo Chamber.'” p. 29.
“What Kelly found was that star producers engage in ‘preparatory exploration’; that is, they develop dependable two-way streets to experts ahead of time…” p. 35
“Second, start performers’ networks were also more diverse.” p. 35
“What we found was that individuals who adopted an energetic, engaging interaction style that created more interactive conversations ended up being more important to idea flow in social networks.” p. 36
“This echo chamber overconfidence effect is a source of fads and financial bubbles.” p. 37
“For example, what can be done when the flow of ideas becomes either too sparse and slow or too dense and fast? … As a result of this tuning we were able to increase the profitability of all the social traders by 6 percent, this doubling their profitability.” p. 38
“…created a spin-off company called Athena Wisdom that is now tuning financial and decision-making networks around the world.” p. 39
“Diversity is important… Contrarians are important…” p. 49
“In summary, people act like idea-processing machiens combining individual thinking and social learning from the experiences of others. Success depends greatly on the quality of your exploration and that, in turn, relies on the diversity and independence of your information and idea sources.” p. 41.
“Utilizing these questions, we can reliably predict what individuals will choose to do and how good their outcomes will be in situations ranging from companies (Part II of this book), to cities (Part III), to entire countries (Part IV).” p 42
Chapter 3 – Idea Flow
“…it is the rates of idea flow – or the barriers to idea flow – that we must understand if we are to work well together.” p. 44
“Idea flow is the spreading of ideas, whether by example or story, through social networks – be it a company, family, or a city… It facilitates the transfer of habits and customs from person to person and from generation to generation” p. 44
“… some psychologists refer to us as Homo imitans.” p. 45
“By harvesting from the parts of our social networks that touch other streams, that is, by crossing what sociologist Rob Burt called the ‘structural hole’ within the fabric of society, we can create innovations.” p. 45
“The bottom line: In these three example – health habits, political preferences, and consumer consumption – exposure to the behavior of peers, both direct and indirect, predicted idea flow.” p. 45
“Perhaps this is because learning from surrounding example behaviors is much more efficient than learning solely from our own experiences. Mathematical models of learning in complex environments suggest that the best strategy for learning is to spend 90 percent of our efforts on exploration, i.e., finding and copying others who appear to be doing well. The remaining 10 percent should be spent on individual experimentation and thinking things through.” p. 54
“Figure 4 (adapted from Kahneman’s Nobel Prize lecture): Humans have two ways of thinking: an older capability based on associations and experience (“fast”) and a new capability based on attentive, rule-based thinking (“slow”).” p. 56
“Psychological studies have shown that the snap judgments of people are more altruistic and cooperative than the decisions made slowly and thoughtfully.” p. 57
“As Nobel Laureate Herb Simon put it, our rational, conscious thinking is the program that invokes the habits of action that take care of all the details of daily life, just as computer programs have subroutines that handle frequently used computations.” p. 58
“Learning and reinforcing the social contract is what enables a group of people to coordinate their actions effectively.” p. 59
Chapter 4 – Engagement
“The ability to work together, though, goes beyond simple idea flow within a community; it also includes striking a bargain between individuals to adopt behaviors that are synchronized and compatible.” p. 63
“Some evolutionary theorists think that this type of ‘social voting’ process could be the most common type of decision making in social animals, in part because it is very good at accounting for the cost-benefit trade-offs of everyone in the group.” p. 63
“Average performers thought teamwork meant doing their part on the team. Star performers, however, saw things differently: They pushed everyone on the team toward joint ownership of goal setting, group commitments, work activities, schedules, and group accomplishments.” p. 63
“Similarly, business research has shown that this sort of engagement – repeated cooperative interactions among all members of the team – can improve the social welfare of the group, and promotes the trustworthy cooperative behavior conducive for successful business relationships.” p. 64
“What our grandmothers would have known, though, was that nearly all the social influence occurred between close friends who had a face-to-face relationship.” p. 65
“The Facebook voting example suggests that information by itself is a rather weak motivator… that seeing members of our peer groups adopting a new idea provides a very strong motivation to join in and cooperate with others.” p. 65
“But social physics tells us that there is another way: by providing incentives aimed at people’s social networks rather than economic incentives or information packets that are aimed at changing the behavior of individuals.” p. 66
“On average it turned out that the social network incentive scheme worked almost four times more efficiently than a traditional individual-incentive market approach… The number of direct interactions that people had with their buddies was an excellent predictor of how much their behavior would change. Similarly, the number of times people had direct interactions with each other gave a surprisingly accurate prediction of the trust they expressed in each other.” pp. 68-69
“The social physics approach to getting everyone to cooperate is to use social network incentives rather than to use individual market incentives or to provide additional information… Engagement – repeated cooperative interactions among members of the community – brings movement toward cooperative behavior.” p. 69
“This social network incentive caused electricity consumption to drop 17 percent, twice the best result seen in earlier energy conservation campaigns and more than four times more effective than the typical energy reduction campaign.” p. 72
“… examined the growth and performance of more than one thousand companies’ internal digital social networks.” p. 72
“In other words, engagement build culture.” p. 74
“Social physics tells us that we must include not only economic exchanges, but also exchanges of information, ideas, and the creation of social norms in order to fully explain human behavior.” p. 75
“If the majority of interactions were instead exploitative, then each interaction would serve to destroy trust.” p. 76
“Engagement requires interaction. Engagement requires cooperation. Building trust.” p. 77-78
“…idea flows, i.e., the spreading of new behaviors through a social network, may be conceptualized as exploration to harvest new ideas followed by engagement with peers to sift through those ideas and convert the good ideas into habits.” p. 79
“The Mathematics of Social Influence.” pp. 80-84
Part Two – Idea Machines
Chapter 5 – Collective Intelligence
“Groups of people, as well as communities, also have a collective intelligence that is different from the individual intelligence iof each group member. Moreover, this group intelligence is about as important a factor in predicting group performance as IQ is in predicting individual performance.” p. 87
“The largest factor in predicting group intelligence was the equality of conversational turn taking; groups where a few people dominated the conversation were less collectively intelligent than those those with a more equal distribution of conversational turn taking. The second most important factor was social intelligence… Women tend to do better at social signals…” p. 88
“What these sociometric data showed was that the patten of idea flow by itself was more important to group performance than all other factors… ” p. 89
“The characteristics typical of the highest performing groups included: 1) a large number of ideas… 2) dense interaction… 3) diversity of ideas… ” p. 89
“Figure 6: (a) an unproductive pattern of interaction, (b) a good pattern of interaction.” p. 89
“One exception to using these patterns of interaction as a guide is performance in times of stress… A second exception is when… emotions are high… ” p. 90
“The sociometric data from these small working groups highlight that teams are operating as idea-processing machines in which the pattern of idea flow is the driving factor in performance.” p. 90
“…spin-off company, Sociometric Solutions… ” p. 92
“Harvard Business Review article ‘The New Science of Building Great Teams’ …” p. 93
“As a result of this simple change, the call center management converted the break structures of all their call centers to this new system and forecast a $15 million per year productivity increase.” p. 95
“Our sociometric badges were deployed in this Chicago-area data-serve sales firm for a period of one month… collecting roughly a billion measurements about who talked to whom, their body language, and even their tone of voice… http://realitycommons.media.mit.edu)” p. 95
“Remember that engagement is defined as idea flow within a work group…” p. 96
“The solution suggested by other social species, such as ape troops and bee colonies, is to alternate between exploration for idea discovery and engagement with others for behavior change.” p. 97
“Figure 7: Exploration and engagement networks. (a) Exploration is when team members interact with other teams. (b) Engagement is when they interact with each other.” p. 98
“Qualitatively, this is what the Bell Stars study of Chapter 2 and 3 found: Star performers became familiar with different perspectives on their work. Senior management, customers, sales, and manufacturing groups all have different views, and the combination of their ideas with those already in their work group were a major source of useful creative thinking.” p. 99
“In fact, a simple combination of the engagement and exploration measures was able to predict which days were the most creative with 87.5 percent accuracy.” p. 102
“To use Herb Simon’s phrasing, if there is a consensus about an idea, it is then integrated into the team’s store of ‘action habits’ to use for their fast thinking.” p. 102
“Because fast thinking uses associations rather than logic, it can make intuitive leaps more easily by finding creative analogies.” p. 103
Chapter 6 – Shaping Organizations
“This makes the pattern of idea flow the single biggest peformance factor that can be shaped by leadership, and yet today there isn’t a single organization in the world that keeps track of both face-to-face and electronic interaction patterns. And, as we all know, what isn’t measured can’t be managed.” p. 106
[[the first unwritten law of service science is “whatever is measured can be gamed or corrupted, and will surely lose its value over time, (requiring new dimensions to be created and put into quasi-balance with existing dimensions for the ecology to remain viable and growing).” ]]
“The goal is to increase the social intelligence of both work groups and the entire organization, and so increase their performance.” pp. 106-107
“When we instrument a typical organization in order to visualize interaction patterns, both managers and employees wear our specially designed sociometric badges (see the Reality Mining appendix for more detail).” p. 107
“The most useful visualizations convey the levels of engagement and exploration within the organization…: We have found that engagement levels predict up to half the variation in group productivity, independent of content, personality, or other factors. Exploration is how much the members of a group of a group bring in new ideas from the outside; that in turn predicts both innovation and creative output.” p. 107
“Good idea flow is difficult in some kinds of groups, for example, in both widely dispersed and mix-language groups.” p. 108
[[[one reason IBM is so amazing]]]
“Figure 9: The Meeting Mediator system consists of (a) a sociometric badge (left) to record the interaction patterns of groups, and a mobile phone (right) to display them as real-time feeback.” p. 109
“While the mathematical measure of idea flow between a work group and people outside it is probably the best way to measure exploration, we have found that it is usually adequate to simply count the number of outside interactions.” p. 113
“…came up with what he calls Bayesian truth serum, which is a way of figuring our who has genuinely new bits of information that might make a difference. One might also call this the wise guys solution to the problem of insufficient diversity in idea flow. In the wise guy method, we look for individuals who can accurately predict how other people will act but whose own behavior is different. The logic is that if a person can predict othr people’s actions, then they already know the common knowledge. But if their behavior is also different from everyone else’s, then they must know something the others don’t. The behavior of such wise guys, then, can be counted as an independent bit of information.” p. 115
“In practical applications, I have found that this third method, estimating the amount of social influence between people, is the easiest and works quite well.” p. 116
“The charismatic connectors are not just extroverts of life of the party types. Rather, they are genuinely interested in everyone and everything… They tend to drive the conversations, asking about what is happening in people’s lives, how their projects are doing, how they are addressing a problem, etc. …People can teach themselves to be charismatic connectors – they are made, not born.” pp. 117-118
Chapter 7 – Organizational Change
“Because the social sciences, including economics, have had to work with such impoverished data, it has been difficult for scientists to understand the process of change.” p. 120
“Now let us examine the Red Balloon Challenge, a case in which my research team and I were able to use social network incentives to build a worldwide organization and accmplish a difficulty task in only a few hours, beating hundreds of competing teams to win the prize money. The strategy we took to accomplish this feat was so novel and effective that our approach was published in the journal Science and later expanded upon in the Proceeedings of the National Academy of Science.” p. 121
“As a result of using this social network incentive strategy, our research team correctly identified the location of all ten balloons in just 8 hours, 52 minutes, and 41 seconds.” p. 124
“Nevertheless, during the last century this sort of hierarchical crowdsourcing has been exactly the model of most corporations. Workers sit in cubicles doing independent tasks, adn then their outputs are routed to anonymous others for the next stage of processing. ” p. 126
“This connection between engagement, trust, and people’s ability to act cooperatively is perhaps the main point of Robert Putnam’s classic book Bowling Alone, which highlights the relationship between civic engagement and health of society. We are trading in ideas, good, favors, and information and not simply the competitors that traditional market thinking would make us. In each area of our lives, we develop a network of trusted relationships and favor those ties over others.” p. 130
“Understanding ourselves this way could have dramatic effect on the character of our society. Because idea flow creates culture, supports productivity, and enables creativity we should place greater value on professions that enhance idea flow: teachers, nurses, ministers, and policemen, along with doctors and lawyers who work for charities, as public defenders, or for inner city hospitals.” p. 130
“My goal is to imagine what a data-driven city might look like and how we can use big data and social physics to create more productive and creative cities. And then in the last section, I will discuss what changes need to be made to privacy, management, and government in order to create a brighter, safer future.” p. 131
“Each of these signals has roots in the biology of our nervous system. Mimicry is believed to be related to cortical mirror neurons, part of a distributed brain structure that seems to be unique to primates and is especially prominent in humans. For example, mirror neurons react to other people’s actions and provide a direct feedback channel between people. One result of this is the surprising ability of human newborns to mimic their parents’ facial movements despite their general lack of coordination… Indeed, these signaling patterns are so clear that they are now used commercially to screen for mental health conditions such as depression and to monitor patient engagement during treatment. For more details see http://cognitocorp, an MIT spin-off company that I cofounded.” p. 134
Part Three – Data-Driven Cities
Chapter 8 – Sensing Cities
“But these century-old solutions are increasingly obsolete. We have cities jammed with traffic, worldwide outbreaks of diseases that are seemingly unstoppable, and political institutions that are deadlocked and unable to act. In addition, we face the challenges of global warming, uncertain energy, water, and food supplies, and a rising population that will require building one thousand new cities of a million people each in order to stay even.” p. 137-138
“Rather than static systems that are separated by function – water, food, waste, transport, education, energy, and so on – we must consider them as dynamic and holistic systems. We need networked, self-regulating systems that are driven by need and preferences of the citizens instead of ones focused only on access and distribution.” p. 138
“Right now, the most important generator of city data is a familiar tool: the ubiquitous mobile phone. These devices are, in effect, personal sensing devices that are becoming more powerful and sophisticated with each product iteration. In addition to deriving information on user locations and call patterns, we can map social networks, and even gauge people’s moods by analyzing the digital chatter that has become so pervasive. ” p. 138-139
“Networks will become faster, devices will have more sensors, and techniques for modeling human behavior will become more accurate and detailed.” p. 139
“Many of the sensing and control elements required to build a digital nervous system are already in place. What is missing, though, are two critical items: The first is social physics, specifically dynamic models of demand and reaction that will make the system function correctly, and the second is the New Deal on Data, an architecture and legal policy that guarantees privacy, stability, and efficient government.” p. 139
“The proliferation of mobile phones makes it possible to leap beyond demographics to directly measure human behavior.” p. 141.
“These data, created by an MIT spin-off company, Sense Networks (which I co-founded), allow us to analyze movement and purchasing behaviors of tens of millions of people in real time.” p. 141
“… the process of social learning and the development of social norms within cities is driven by the observation of peer behavior, that is, by people trying to fit in with their chosen peer groups.” p. 142
“For most people, the primary pattern is the workday, that is, going to work and coming home, usually along the same path day after day. The second most pronounced pattern is the weekend and days off, often with the characteristic behavior of sleeping in and spending that night out in a location besides the home or work. Perhaps surprisingly, the places we go and things we do during our free time are almost as regular as our work patterns. The third pattern, however is a wild card: days spend exploring, usually a shopping trip or an outing. This last is distinguished by it lack of structure. Together these three patterns typically account for 90 percent of most of out behavior.” p 142-143
“As we will see in the next few sections, these data-driven forecast allow us to prepare for peaks in demand and manage them better. It also means that we can react better to emergencies or disasters, because we can know who is likely to be where and when.” p. 143
[Why does the Atlanta snow storm (late Jan or early Feb 2014) come to mind?]
“A simple example consists of basically crowdsourcing dangerous conditions. If other cars have just recently gone down the road you are driving on and had emergency breaking events, then you are at significant risk of an accident. If you are traveling faster than other cars were, then you are in real danger. Warnings based on this sort of big data could be used to reduce accidents rats dramatically.” p. 144
[New features in cars, even before driverless cars, are intelligent following behavior in traffic jams. This is significant. Productivity boost from freeing up medical, emergency, police, repair shop, insurance company, etc. resources from needless accidents. An what a disruption to families – accidents need to be avoided.]
“Perhaps the most interesting idea is to use transportation networks to increase the productivity and creativity of cities. We can use data about people’s habits to structure public transportation networks to increase the productivity and creativity of cities: We can use data about people’s habits to structure transportation to promote more exploration within cities.” p. 145
[Bill Gates once told a group of us at the San Jose Tech Museum that if we could use technology to make it seem like there was suffering next door to us in our neighborhoods, especially the wealthiest and most segregated of us “so-called elite folks,” it would cause the most dramatic drop in human suffering on the planet in human history, because people are basically good and have empathy for the unnecessary suffering of others. I recall thinking – “I like this guy Bill Gates” – when he said that. He also mentioned he was going slightly schizophrenic between “make-lots-of-profit Bill Gates” and “give-away-lots-of-money Bill Gates”- got a good laugh from the crowd, then he added that his wife was helping him remain somewhat sane through the transition. Shortly afterBill Gates made these comments at San Jose Tech Museum, Warren Buffet aligned his charitable efforts with the Gates Foundation. Nice, there is a lot of good in the universe… But helping people who behave irrationally, and making peace with that, is explored in the eccentric yet powerful writings of … Anthony Galambos ‘Unto the stars (sit et astra)’ – unfortunately I don’t think the Tea Party has read this work of a paranoid of idea-theft, philosophically-minded aerospace engineer of the 1960’s, though if their leadership did, it might provide some foundation for their hopes for society. Perhaps Gene Roddenbury read it though. Oh well, who really knows what influences what in history… not me that’s for sure, mere speculation. I probably read too much any way. I doubt anyone will read these remarks, so I am safe.]”
“With reported sore-throat and cough symptoms we found that people’s normal patterns of socialization were disrupted, and they began to interact with more and different people (good for the virus, bad for humans [especially their productivity and creativity]).” p. 146
“This idea is underpinning another of my group’s spin-off companies, Ginger.io, that I helped co-found…” p. 147
“Moreover, using financial incentives privileges the rich. As an example, consider congestion pricing… This is particularly worrisome because exploration results in innovation… There are three types of interventions that are naturally suggested by the social physics perspective. …Social Mobilization: As used in the Red Balloon Challenge… Tuning the Social Network: …To solve the problem of both insufficient diversity and echo chambers… Leveraging social engagement: … Facebook ‘get out the vote’ campaign in 2010 targeted 61 million people… ” p. 150-152
“The main barriers to achieving these goals are privacy concerns and the fact that we don’t yet have any consensus around the trade-offs between personal and social values.” p. 153
Chapter 9 – City Science
“Urban areas use resources more efficiently and produce more patents and inventions with fewer roads and service per capita than rural areas.” p. 155-156
“Cities are idea machines in the same way that companies are idea machines.” p. 156
“The difference, however, is that social physics conceptualizes cities and companies as idea factories, so the focus is on the flow of ideas rather than the flow of goods.” p. 157
[Yep, Service-Dominant Logic by Vargo and Lusch – service science and social physics are cousins.]
“As the remainder of this chapter will explain, what really matter is the flow of ideas, and not classes or markets.” p. 157
“That is, when we look at all of out interactions we see that people have many social roles (e.g., mother, coworker, citizen, jazz enthusiast, etc.) and each role engages a different set of people, so that the functions of engagement and exploration are combined across all of a person’s social networks.” p. 160
“Figure 16. A typical shopping pattern, with the size of each circle indicating the frequency of places visited…” p. 161
“This suggests that when people have abundant resources, it is their curiosity and social motivations that drive their exploratory behavior and not the desire to find cheaper prices or better product.” p. 164
“That is, they used their extra money to increase their exploration.” p. 164
“In fact, the relationship between the amount of disposable income and amount of exploration is very predictable.” p. 164
“Figure 17: The model of idea flow along social ties accurately predicts GDP per square mile.” p. 166
“Because of the dependence of idea flow on transportation efficiency, the idea flow equations can be turned around and GDP can be used to calculate the average commuting distance.” p. 166-167
[Amos Hawley’s “Human Ecology” work comes to mind.]
“Designing Better Cities: Traditional theories of city growth emphasize markets and classes, suggesting that specialization in industry or new categories of highly trained workers as generative models of city development. In contrast, the social physics approach provides a plausible and empirically grounded model that does not require the presence of these social structures. Instead, it relies only on the fine-grain characteristics of human social interaction: the distribution of social ties, the flow of ideas along those ties, and the means by which those ideas are converted into new behaviors and new social norms by engagement with peer groups.” p. 167
“The failure of most city zoning is that if cities segregate by function, then exactly the wrong change in the structure of social ties occurs: Engagement decreases locally… What we want is the opposite: self-contained towns in which people meet each other regularly and there are many friends of friends. As famous urban advocate Jane Jacons argued, a healthy city has complete, connected neighborhoods.” p. 168
“The best size for a city can even be calculated: If within each peer group everyone is a friend of a friend, then the math of social physics indicates that we get maximum engagement for populations of up to roughly one hundred thousand people. This suggests that the best solution is small-to-medium-sized towns in which everyone is within walking distance of town center, the stores, the schools, the clinics.” p. 168
“This is the approach planners in Detroit are trying, by working to create a tiny hot new city inside the decaying sprawl of the original one.” p. 170
“There is no need to appeal to assumptions about social hierarchies, specialization, or other special social constructs in order to explain how GDP, research and development, and crime grow with increasing city population.” p. 170
“… we have seen that today’s digital technology is not as good at spreading new ideas as are face-to-face interactions.” p. 171
“The recommendations about city structures that come from social physics are similar to those of famous urban advocate Jane Jacobs, but what social physics has added is a quantitative, mathematical basis for recommendations. By understanding cites as idea engines, we can use the equations of social physics to being to tune them for better performance.” p. 172
“Digital Networks Versus Face-To-Face” p. 172
PART FOUR: Data-Driven Society
Chapter 10 – Data-Driven Society
“We have seen that the digital bread crumbs we leave behind provide clues about who we are and what we want. That makes these personal data immensely valuable, bot for public good, and for private companies. As European consumer commissioner Meglena Kuneva said recently, ‘Personal data is the new oild of the Internet and the new currency of the digital world.’ This new ability to see the details of every interaction, however, can be used for good or for ill.” p. 177
“A successful data-driven society must be able to guarantee that our data will not be abused – and perhaps especially that government will not abuse the power conferred by acces to such fine-grained data. To achieve the positive possibilities of a data-driven society we require what I have called the New Deal on Data – workable guarantees that the data needed for public goods are readily available while at the same time protecting the citizenry.” p. 178
“These data must not remain the exclusive domain of private companies, because then they are less likely to contribute to the common good. This, these privagte organizations must be key players in the the New Deal on Data’s framework for privacy and data control. Likewise, these data should not become the exclusive domain of the government, because this will not serve the public interest of transparency, and we should be suspicious of trusting the government with such power.” p. 179
“… I will discuss what may be the world’s first large-scale digital commons, and explain how a resource such as this can be used to help build a better society.” p. 179
“We need to recognize personal data as a valuable asset of the individual that is given to companies and government in return for service.” p. 180
“In 2007, I first proposed the New Deal on Data to the World Economic Forum. Since then, this idea has been run through various discussions and eventually helped shape the 2012 Consumer Data Bill of Rights in the United States, along with a matching declaration on Personal Data Protection in the EU.” p. 181
“A system like this has made the interbank money transfer system among the safest systems in the world, but until recently such technology was only for the big guys. … the Institute for Data Driven Design (co-founded by John Clippinger and myself) have helped build openPDS (open Personal Data Store), a consumer version of this type of system, and we are now testing it with a variety of industry and government partners.” p. 182
“… Data Liberation Front (www.dataliberation.org), a group of Google engineers who mission statement says that ‘users should be able to control the data they store in any of Google’s products’ and whose goal is to ‘make it easier to move data in and out.'” p. 184
“Until we have a solid, well-proven, and quantitative theory of social physics, we won’t be able to formulate and test hypotheses in the simple, clear-cut manner that today allows us to reliably design bridges or test new drugs… We need to construct living laboratories… …”open data city” I have just help launch within the city of Trento in Italy… More details on this living lab can be found at http://www.mobileterrioriallab.eu.” p. 186-187
“Some people react negatively to the phrase social physics, because they feel it implies that people are machines with free will and without the ability to move independently of our role in society.” p. 189
“The fact that most of our attitudes and thoughts are based on integrating experiences of others is the very basis for both culture and society. It is why we can cooperate and work together toward common goals.” p. 191
“To accomplish this change we need a language and logic that everyone can understand and that has proven to be more useful thank the old language of markets and classes. I believe the language of social physics – exploration, engagement, social learning, and measurement of idea flows – has the potential to serve this role.” p. 192
Chapter 11 – Design for Harmony
“Competition versus cooperation. … In fact, the main source of competition in society may not be among individuals but rather among cooperating groups of peers.” p. 194-195
“Figure 18: (a) a classical market, (b) an exchange network. An exchange network is a market where trade options are limited to connections within the social network. Trust and personalized service is much more likely to develop with an exchange network.” p. 197
“Natural Law: Exchanges, Not Markets – Modern society is based on the idea that markets can distribute resources efficiently and on the assumption that humans are relentless competitors. But as we have seen, this is simply not a good description of how our society lives and functions.” p. 199
“In other words, many early societies operated much more like an exchange network than a market.” p. 200
“The central reason that exchange networks are better than markets is trust.” p. 200
“In markets, one must usually rely on having access to an accurate reputation mechanism that rates all the participants, or to an outside referee to enforce the rules.” p. 201
“Because we are not just economic creatures, our models must include a broader range of human motivations, such as curiosity, trust, and social pressure.” p. 203
“I believe there are three design criteria for our emerging hypernetworked societies: social efficiency, operational efficiency, and resilience.” p. 203
“Such examples give hope that we can build human-machine systems that very quickly configure both economic and social incentives to assemble entire systems, products, and services on the fly. We need to think more broadly, however, than simply how to rebuild damaged systems. We also need to think about the resilience of the entire social design.” p. 210
“Consequently, to survive systemic risks we need to have a diverse set of systems rather than one so-called best system.” p. 210
“These results and others like them are available at http://www.d4d.orange.com/home.” p. 214
“All around the world governments and universities are beginning to take a look at how cities are organized and governed, motivated by rapid increase in city populations and the number of new cities that are being created.” p. 215
“… as codirector of MIT Media Lab’s City Science initiative (see http://cities.media.mit.edu) I am now working with a variety of cities to improve idea flow.” p. 215
Appendix 1 – Reality Mining
“In recent years, the social sciences have been undergoing a digital revolution, heralded by the emerging field of computational social science. In our 2009 Science paper, David Lazer and I, together with more than a dozen endorsing colleagues, describe the potential of computational social science to increase our knowledge of individuals, groups, and societies by use of data with an unprecedented breadth, depth, and scale.” p. 217
“Figure 19: A standard design for a sociometric badge, courtesy of Sociometric Solutions, Inc.” p. 220
“Social media activity, credit card activity, and other sorts of individual information can also be recorded. It is available for Android mobile phones at httP://www.funf.org.” p. 224
Appendix 2 – OpendPDS
“Personal data – digital information about users’ locations, calls, Web searchers, and preferences – have been called the oil of the new economy and what I have seen reinforces this comparison.” p. 225
“Owning a personal data store (PDS) would allow the user to view and understand how the data collected might be used, as well as to control the flow of data and to manage fine-grained data access.” p. 227
Appendix 3 – Fast, Slow, and Free Will
Psychologist Daniel Kahneman and artficial intelligence pioneer Herb Simon, both Nobel Prize winners, each embraced a model of a human with two ways of thinking. In Kahneman’s formulation, one way of thinking is fast, automatic, and largely unconscious mode, and the second way of thinking is a slow, rule-based, and largely conscious mode. A thumb-nail sketch of gfast thinking is that it drives habits and intuitions, largely by using associations among personal experiences and experiences learned by observing others. In contrast, the slow mode of thinking uses reasoning, combining beliefs in order to reach new conclusions.” p. 235
“The best capsule summary is that habits and gut instinct are based on fast thinking which uses engagement with others to integrate their experiences with our own, and thus form our habits of action. Exploration and guiding our attention to help figure things out seem to be the core functions of slow thinking, which is supported by observation of events, context, and correlation that are learned both personal perception and language. Understanding that humans have two ways of thinking that work quite differently transform many of the classic disputes in philosophy, anthropology, and sociology. … emphasize how the structure of society shapes the behavior of the individual… …emphasize free will and how individual cognitive processes shape individual behavior. …it tells us that both sides of the free will versus social context debate are right, but neither is right about all human behavior all of the time.” p. 239
Appendix 4 – Math
The concept of influence is extraordinarily important in the natural sciences. The basic idea of influence is that an outcome in one entity can cause an outcome in another. Flip over the first domino, and the second one will fall. If we understand exactly how two dominos interact – how one domino influences another – and we know the initial state of the dominos and how they are situated relative to one another, then we can predict the outcome of the whole system.” p. 241-242
“An entity’s state is affected by its network neighbors’ states and changes accordingly. Each entity in the network has specifically defined strength of influence over every other entity and equivalently, each relationship can be weighted according to their strength.” p. 243
“The state of each entity is not directly observable. As in a hidden Markov model (HHM), however, each entity emits a signal… ” p. 245
“The number of parameters grows quadratically with respect to the number of entities C and the latent space size S. This largely relieves the requirement for large training sets and reduces the changes of model overfitting, making the influence model scalable to larger social systems.” p. 247
fyi… A very mechanistic view that I have seen before in Gilberts work “Human Competence: Engineering Worthy Performance”
http://www.amazon.com/Human-Competence-Engineering-Worthy-Performance/dp/0787996157
However, big data makes it fresh… more data makes it quite interesting… still mechanistic, but interesting…
-Jim
Dr. James (“Jim”) C. Spohrer
Director, IBM University Programs (IBM UP) and Cognitive Systems Institute
IBM Research – Almaden, 650 Harry Road, San Jose, CA 95120 USA
spohrer@us.ibm.com 408-927-1928 (o) 408-829-3112 (c)
Innovation Champion (http://www.service-science.info/archives/2233)
Pingback: Humanizing Big Data: The Impact of Crowd Science
Pingback: Great Learning Blog about Analytics
Pingback: Measurement of Knowledge Value | Service Science
Pingback: Humanizing big data: The everyday impact of crowd science | Great Learning
Pingback: Humanizing big data: The everyday impact of crowd science | GL Analytics Digest
Pingback: Humanizing Big Data: The Everyday Impact of Crowd Science - via @Mindjet's Conspire #ideasquad
Pingback: Humanizing big data: The everyday impact of crowd science | DigitalCram
Pingback: Jordan Meyerowitz | Humanizing big data: The everyday impact of crowd science
Pingback: Time to re-read “As We May Think” and “Augmenting Human Intellect” | Service Science
Pingback: Most careers in the era of cognitive systems have not been invented yet | Service Science