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Abstract 

This article addresses the prospects for automating intelligence versus 
augmenting human intelligence.  The evolution of artificial intelligence (AI) is 
summarized, including contemporary AI and the new capabilities now possible.  
Functional requirements to augment human intelligence are outlined.  An overall 
architecture is presented for providing this functionality, including how it will make 
deep learning explainable to decision makers.  Three case studies are addressed, 
including driverless cars, medical diagnosis, and insurance underwriting.  Paths 
to transformation in these domains are discussed. Prospects for innovation are 
considered in terms of what we can now do, what we surely will be able to do 
soon, and what we are unlikely to ever be able to do. 

INTRODUCTION 

The idea that intelligence can be automated, replacing millions of humans in 
routine jobs, has received an enormous amount of attention, e.g., (Brynjolfsson, 
& McAfee, 2014; Beyer, 2016; Auerswald, 2017).  Various pundits have projected 
dramatic disruptions of the economy as robots, or equivalent, pervasively provide 
an increasing range of services.  There has been considerable debate about the 
extent to which completely “hands-off” automation will be possible and how legal 
issues will be addressed. 

Undoubtedly, there are many jobs that involve 100% routine, highly repeatable 
tasks that will become totally automated.  There are many more jobs that are 
partially routine and partly non-routine that will be amenable to automation that 
augments humans who are responsible for the non-routine aspects of these jobs.  
This article addresses the ways in which human intelligence in such situations 
can be augmented rather than replaced.  

First, consider several observations about contemporary artificial intelligence.  
Machine learning – or deep learning -- applications have demonstrated 
impressive capabilities to perform tasks such as recognizing pictures and speech, 
detecting anomalous behaviors, and other pattern-oriented functions.  The neural 
network algorithms underlying machine learning are composed of multiple layers 
involving both linear and non-linear transformations.  Conclusions reached by 
machine learning are, in general, not explainable in the sense that the 
computational system cannot explain why it is making particular 
recommendations. 
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The implications are fairly clear.  To the extent that decisions emanating from 
machine learning are always 100% correct, then the action systems, human or 
otherwise, can simply execute the recommended decisions.  If recommendations 
will occasionally be rejected, or should be rejected, then the lack of explanation 
capabilities will impose responsibilities on humans that will require decision 
support.  This suggests the need for an intelligent interface layer between the 
machine learning capabilities and the action systems, particularly when human 
decision makers are ultimately responsible for decision making. 

The concept we are proposing includes the following overall functionality.  An 
intelligent interface needs to understand human decision makers’ intentions and 
provide support needed for successful pursuit of these intentions. Humans’ 
intentions are very context dependent and change in time depending on external 
circumstances and the intentions and actions of a range of stakeholders, e.g., 
other drivers, patients, customers, and competitors. Consequently, an underlying 
time-varying workflow model is required that provides explicit representation of 
humans’ goals, plans, and scripts, as well as information and control 
requirements.  These notions come together in an approach to augmenting 
intelligence that is elaborated in this article. 

We proceed as follows.  First, we summarize the evolution of artificial intelligence 
(AI).  Then, we discuss contemporary AI and the new capabilities now possible.  
This leads to consideration of functional requirements to augment human 
intelligence.  We then present an overall architecture for providing this 
functionality, including how it will make deep learning explainable to decision 
makers.  Three case studies are addressed – driverless cars, medical diagnosis, 
and insurance underwriting. Paths to transformation in these domains are 
discussed.  The article concludes by considering prospects for innovation in 
terms of what we can now do, what we surely will be able to do soon, and what 
we are unlikely to ever be able to do. 

EVOLUTION OF AI 

One could argue that AI began with Ada Lovelace in the mid 1800s (Isaacson, 
2014, Auerswald, 2017).  However, many would agree that the field began in 
earnest with Alan Turing’s landmark paper (Turing, 1950). His article on the 
Imitation Game unveiled his test for a machine’s ability to exhibit intelligent 
behavior.  It has remained an important philosophical construct with AI. 

The emerging field of Artificial Intelligence (AI) was recognized at the Dartmouth 
College AI Conference in 1956 led John McCarthy, Marvin Minsky, Claude 
Shannon, and Nathaniel Rochester.  Marvin Minsky’s PhD thesis (Minsky, 1954) 
led 15 years later to his book, with Seymour Papert, on perceptrons (Minsky & 
Papert, 1969). Frank Rosenblatt’s work on perceptrons appeared soon after 
Minsky’s thesis (Rosenblatt, 1957).  Allen Newell, John Shaw, and Herbert 
Simon published work on the General Problem Solver (1959).   



Even this early, differences of approaches were clear.  Perceptrons were based 
on statistical methods for pattern recognition.  This approach foreshadowed the 
success of multiple layer networks of today’s deep learning systems that require 
tremendous computing power and data sets no available in those early days. 
Symbolic logic was adopted for problem solving or reasoning.  This approach 
presaged the rise of expert systems, and the challenges of manually building and 
maintaining large rule-based knowledge systems.  Of course, recognizing an 
object with a network model is a rather different task from making a sequence of 
tests to troubleshoot an electronic circuit with a rule-based knowledge system. 

In the 1960s, Joseph Weizenbaum introduced Eliza (1966), which simulated 
“conversation” by matching patterns and substituting key words that gave users 
an illusion of understanding, despite the computer having no means for 
understanding the context of the dialog.  A richer approach to language was 
Roger Schank’s Conceptual Dependency Model (1969), which eventually led to 
major contributions to natural language understanding (Schank & Abelson, 1977).  

The 1970s saw applications of AI to enhance medical diagnosis and treatment, 
starting perhaps with MYCIN (Shortliffe & Buchanan, 1975).  However, a report 
by James Lighthill (1973) criticized AI for articulating and then failing in its pursuit 
of grandiose objectives.  This report, and other forces, led to the First AI Winter, 
with substantial DARPA funding cuts. 

The 1980s saw the growth of expert systems, led by Edward Feigenbaum (1980).  
These rule-based systems were built from ‘knowledge engineering” with subject 
matter experts.  DARPA’s Pilot’s Associate’s Program emerged to leverage 
expert systems technology (Banks & Lizza, 1991).   Our basic research on 
intelligent interfaces (discussed below) was funded by a variety of agencies; this 
DARPA program provided the means to bring the pieces together. 

John Searle (1980), a philosopher, introduced the Chinese Room during this 
period.  A non-Chinese speaker is locked in a room and provided various rules 
for translating Chinese stories into English. He argued that while one might think 
one was communicating to a Chinese person, one is just communicating with an 
algorithm.  This was yet another critique of AI not being capable of creating a 
mind. 

The late 1980s saw the Second AI Winter. The Lisp machine market collapsed.  
Japan’s 5th Generation Project fizzled.  DARPA funding cuts happened again.  
This period saw computing move from Lisp machines to Sun engineering 
workstations to desktop PCs. 

In the 1990s, there were several real applications.  In 1991, the ISX Corporation, 
(a spinoff from Teknowledge, founded by Feigenbaum), created and deployed 
DART (Dynamic Analysis and Replanning Tool).  DART was used by the U.S. 
military in the Middle East to optimize and schedule the transportation of supplies 
or personnel and solve other logistical problems (Cross, et al., 1994). 



In 1997, IBM’s Deep Blue defeated chess master Gary Kasparov.  The 
development of this technology, chronicled by (Hsu, 2002), was not intended for 
only playing chess.  Another major demonstration of IBM’s capabilities came 
when Watson won Jeopardy! in 2011.  Ferrucci and colleagues (2013) describe 
the development of this technology. 

The 2000s also saw the maturation of deep learning first at universities, and then 
at Microsoft, Google and other companies (Hof, 2013).  Deep learning is 
discussed in some depth in the next section.  It is nevertheless worth noting here 
a trend over the 60+ years since Turing.  Early innovations were associated with 
people, often individuals at universities. Universities helped create large open 
datasets and competitions that led to measurable progress and accumulation of 
knowledge. Teams, often working at large companies, have accomplished later 
innovations, often with far more computing resources. 

Another trend is also of note.  Early research focused on two dominant 
approaches: statistically based learning for pattern recognition, and rules based 
or symbolic logic for problem solving and reasoning.  Big data and almost free 
computing power have allowed enormous advances in machine-based pattern 
recognition.  We argue later that both are still needed to augment intelligence. 

CONTEMPORARY AI 

AI based on symbolic logic worked where rules and definitions were very clear in 
domains such as mathematics and chess.  However, the symbolic logic approach 
was overwhelmed by many pattern recognition tasks.  AI based on layered 
neural nets, now termed deep machine learning, has been successful for speech  
recognition, image recognition, language translation, and driverless cars. Each 
subsequent layer looks for patterns in the previous level’s patterns. Early on this 
approach was called connectionism or distributed parallel processing. 

Trends 

Lloyd’s (2016) sees the drivers of the AI revolution as economic – these systems 
make us more productive, mobile, connected, and able to compete in the global 
world economy.  They also improve safety in hazardous environments and for 
tedious jobs. 

Mittal and colleagues (2017) see the driving forces to include exponential data 
growth, faster distributed systems (networks), and smarter algorithms.  They 
assert that AI will enable new approaches to customer engagement, amplification 
of employee skills and intelligence, cultivation of new product and service 
offerings, and exploration of new business models. 

Lewis-Kraus (2016) provides an in-depth report on Google’s decision to 
reorganize Google Translate around AI, taking nine months to succeed and, in 
the process, growing the Google Brain project.  They used deep machine 
learning to enable an enormous improvement in the performance of Google 



Translate.  Faced with Searle’s question of whether the AI really understands the 
languages it translates (Searle, 1980), the Google team dismissed the question 
as irrelevant.  Instead, they argue that they are on a path to “Artificial general 
intelligence (that) will demonstrate a facility with the implicit, the interpretative.” 

Formation of The Partnership on AI was recently announced (Partnership, 2017).  
A network of companies heavily involved in AI has been recruited with Amazon, 
Apple, Google, Facebook, IBM, and Microsoft as founding members. Recent new 
members include eBay, Intel, Salesforce, SAP, Sony, and Zolando, as well as 14 
non-profit members.   A primary goal of this partnership is collaborations around 
defining frameworks to build and deploy safe and ethical AI systems. 

What do these trends portend?  Lenartowicz (2015) considers “a genuine, 
unstoppable intelligence arising from the accelerating interconnectivity of 
individuals and their technological extensions.”  However, social boundaries 
seem to impede this.  She suggests a biological explanation for why this happens.  
Auerswald (2017) vision is less sweeping.  He sees a bifurcation of jobs, 
involving “discontinuous advances in code (that) creates a new low-cost high-
volume option and a high-cost, low-volume option.”  The former are automated; 
the latter offer new opportunities for augmenting human intelligence. 

Limits 

Deep learning works well when trained with large numbers of examples, but this 
is not feasible for many tasks, e.g., reasoning about and solving novel problems.  
Further, as the Stanford 100 Year Study notes, “No machines with self-sustaining 
long-term goals and intent have been developed, nor are they likely to be 
developed in the near future” (Stanford, 2016). 

Finding a large number of training examples can be a challenge.  The Economist 
(2017) reports on the use of video games to train AI, for example, to recognize 
particular features of the environment.  Relative to actually learning to play these 
games, AI has difficulty learning games when early events have no meaning until 
much later in the game.  AI also has great difficulty using knowledge from one 
game to play another game. 

Nguyen, Yosinski and Clune (2015) report that deep neural networks are easily 
fooled, sometimes making high confidence predictions for unrecognizable 
images, e.g., reporting that a picture of white noise is a lion.  This could be a 
problem if the neural networks are operating autonomously; less so if they are 
augmenting human intelligence.  Coldewey (2017) provides an amusing example 
of fooling a driverless car. 

Kaplan (2015) asks, “How do we assure that (robots) respect the unstated 
conventions that people unconsciously follow?”  He further notes that “Finding 
the right balance between our personal interests and the needs of others – or 
society in general – is a finely calibrated human instinct, driven by a sense of 
fairness, reciprocity, and common interest.” 



Driverless Cars 

The concept of driverless cars has, of late, received enormous attention.  The 
race is among several very serious players to refine and deploy their cars, with 
potentially disruptive impacts on the economy, e.g., car insurance and auto 
finance (Liu, 2017).  A range of challenges remains. 

Bollier (2017) discusses human interaction with driverless cars and asks whether 
AI can understand human foolishness.  In particular, humans in cars and human 
pedestrians signal each other in ways difficult for AI to sense.  And, of course, 
who is responsible for any harm caused by driverless cars? 

Boudette (2016) discusses five things that give self-driving cars headaches 
including unpredictable humans, disappearing lines on the road (e.g., due to 
snow), detours and rerouted roads, puddles that might be too deep to cross, and 
having to make tough decisions, i.e., when a crash is inevitable.   Bershidsky 
(2015) and Kaplan (2015) discuss the last item, as do many commentators.   

Sherman (2015) reports that humans drive 3 trillion miles per year in the US, but 
driverless cars have only been tested for 1+ million miles.  It would take decades 
or more to gain comparable data for driverless cars.  People learn to drive 
differently in different contexts – day versus night, clear weather versus storms, 
seasonal variations, type of road variations, highway versus city, levels of 
congestion variations, etc. There have been several accidents when human 
driven cars hit the driverless cars, typically in the rear end.  

Norman (2014) notes that people cannot successfully supervise automation 
when it involves long periods of doing nothing.  They are supposed to be vigilant, 
but automation complacency inevitably occurs.  When they need to intervene, 
they have no training and just seconds to react.  The best solution is human-
automation collaboration or teamwork, with humans in charge. 

Healthcare 

Bollier (2017) sees a primary role for AI being augmentation of the intelligence 
and skills of physicians.  That was seemingly the intent of the MYCIN project four 
decades ago (Shortliffe & Buchanan, 1975).  Much more recently, IBM’s Watson 
has been targeted to enhance diagnosis and treatment (Galeon & Hauser, 2016).  
No one, however, anticipates replacing physicians with robots. 

However, there are some tasks where deep learning could excel.  The Economist 
(2016) discusses deep learning for radiology.  Such pattern recognition tasks 
could greatly benefit from deep learning, although the questions remains of 
whether people will accept computers telling them, for example, that they have 
cancer.  Augmentation seems much more likely than automation. 

Auerswald argues that “The greatest advances in the provision of healthcare 
services will come from a combination of wearable technologies, diagnostics 
supported by Big Data applications, peer-to-peer operations, and other 



innovations in code that distribute healthcare delivery away from the highly 
centralized models that came to dominate in the twentieth century.” (Auerswald, 
2017, pp. 160-161) 

Journalism 

Bollier (2017) sees AI affecting journalism by enabling automated curation and 
exclusion of information, automated detection of news trends, and automated 
fact checking.  The Economist (2016) discusses automation of market reports 
and sports reporting.  

Our experience with automated content aggregation and text analytics suggests 
that there is no other practical way to digest millions, or even thousands, of 
publications on topics of interest (Basole, Seuss & Rouse, 2012; Yu, Serban & 
Rouse, 2013).  The state of the art is very impressive (Seuss, 2011).  Admittedly, 
however, the automation needs help from humans, at least initially, to assure that 
it correctly understands the targeted domain. 

Impact 

Brancaccio (2017), interviewing Martin Ford, considers the economic and social 
impacts of AI.   Ford notes that technology has historically made us richer.  
Agricultural workers lost jobs to mechanization, but then moved to factory jobs.  
However, now it may be different, as automation technology has become 
pervasive, almost like electricity.  Any job that seems routine and boring is at risk 
of automation.  More specifically, Ng (2016) argues that if a human can perform a 
mental task in less than one second, that task probably can be automated. 

Chui, Manyika and Miremadi (2016) see five factors affecting automation 
including technical feasibility, costs to automate, relative scarcity of skills and 
costs of workers, benefits of automation beyond labor-cost substitution, and 
regulatory and social acceptance considerations. They conclude that more than 
three quarters of predictable physical work is automatable.  Retail is most 
vulnerable to automation; manufacturing is second.  In contrast, jobs involving 
decision making, planning, and creative work are much less vulnerable.  Jobs 
that involve managing and developing people are least vulnerable. 

The Economist (2016) notes that, “What determines vulnerability to automation is 
not so much whether the work is manual or white-collar but whether or not it is 
routine.”  For those affected, it needs to be easier for workers to acquire new 
skills and change jobs. 

Another possibility is that jobs will disappear rather than being automated.  A 
recent study (Liu, 2017) found that the car insurance and auto finance industries 
could be significantly disrupted by cars that seldom have accidents and, due to 
high costs of technology laden driverless cars, consumers’ shift from car 
ownership to use of car services.  Thus, taxi and truck driving jobs may be 
replaced while insurance and loan-underwriting jobs will simply disappear. 



New Perspective 

Fairly recently, a new perspective on these issues is emerging (Spohrer & 
Banavar 2015; Spohrer 2016).  We can view the automation-augmentation 
continuum as involving mixes of two different types of cognitive systems – 
biological and digital.  Each cognitive system can play a range of roles -- tool, 
assistant, collaborator, coach, and mediator.  The progression from cognition tool 
to cognitive mediator requires cognitive systems with increasingly sophisticated 
models of tasks, the world, the user, and the institutional context of the 
interactions.  A digital cognitive mediator does not yet exist, but when it does it 
will be trusted to make decisions on its user’s behalf because of the level of 
sophistication of its model of its user as well as the laws and institutions of 
society.  Such digital cognitive mediator systems will be designed to behave 
ethically according to the evolving standards of society. 

It is easy to imagine digital cognitive systems serving as tools, assistants, and 
collaborators.  Coaching and mediation abilities are evolving.  It is also possible 
for biological cognitive systems to serve as tools and assistants to digital 
cognitive systems.   

An intriguing example is the use of bald eagles to down illegal drones (Booker, 
2016).  The digital cognitive system monitors the skies for illegal drones and then 
dispatches the biological cognitive assistants to catch the interlopers and bring 
them back, for a rewarding chunk of meat.  Special talon protectors have been 
developed to assure the eagles are not injured. 

This brings a new perspective to the automation-augmentation continuum.  It is 
no longer a question of what should humans do and what should computers do.  
The question now concerns creating the best cognitive team or cognitive 
organization to address the problems at hand.  This portends some creatively 
different solutions from what have been developed in the past. 

Cognitive organizations of biological and digital workers will likely evolve rapidly 
over the next sixty years driven by Moore’s Law.  Moore’s law can be thought of 
as reducing the cost of computation by a factor of a thousand every twenty years, 
a million every forty years, and a billion every sixty years.  Figure 1 shows the 
impact of Moore’s Law on the cost of digital workers anticipated over the next 
sixty years.  The figure also shows the increase in GDP (Gross Domestic 
Product/Employee) anticipated as people and organizations can afford to have 
more and more digital workers working on their behalf.  

GDP was computed using a specific query to WolframAlpha website: 
“gdp/employees USA from 1950 to 2015.”  This provided eight rounded data 
points (1950 $7000; 1960 $10,000; 1970 $15,000; 1980 $33,000; 1990 $55,000; 
2000 $78,000; 2010 $116,000; 2015 $127,000), that were then used as input to 
Microsoft Excel curve fitting to project rounded values (2020 $200,000; 2030 
$350,000; 2040 $500,000; 2050 $800,000; 2060 $1,250,000; 2070 $2,000,000; 



2080 $3,250,000).  Again, the point is merely to show that (1) as the cost of 
digital workers decreases and (2) GPD per employee increases, then the number 
of digital workers that people and organizations can afford increases 
exponentially, for some period of time.  

 

Figure 1: Decreasing Costs of Digital Workers Anticipated From 2020 – 2080, 
and Increasing GDP/Employee (see service-science.info/archives/4741). 

Digital workers are likely to become increasingly intelligent as they move from 
petascale (narrow AI pattern recognition) to exascale (general or broad AI 
reasoning) computing capabilities.  In 2017, a terascale systems costs about $3K, 
but twenty years ago such a system would have costs millions.  In 2017, a 
smartphone is a gigascale system.  As the cost of digital workers decreases, 
people and organizations will be able to afford more and more digital workers to 
work on their behalf, increasing GDP/employees. 

Business and governments that have a fiduciary responsibility to shareholders 
and citizens will likely use an increasing number of digital workers over time to 
reduce costs.   Individuals will also be able to use digital workers that they own 
on their behalf to lower the cost of family operations as service systems.   The 
implications of cognitive tools, assistants, collaborators, coaches, and mediators 
as part of smarter and wiser service systems is a new area of exploration for 
service science (Spohrer, Siddike, & Kohda 2017).   Service science studies the 
evolving ecology of entities with capabilities, constraints, rights, and 
responsibilities, their value co-creation and capability co-elevation mechanisms.   
The rapidly dropping cost of digital workers with human-level capabilities will 
have a dramatic impact on existing service systems, including families, 



universities, businesses, and governments – and test if there is a speed limit to 
progress (Spohrer, Giuiusa, Demirkan & Ing, 2013). 

At both microeconomic and macroeconomic scale, technologies that extend 
human capabilities in one context can also automate and replace them in another 
context (Markoff, 2016).  For example, workers might use technology to perform 
better at their jobs, then have their jobs go away from a more advanced version 
of the technology, but then adopt a low-cost version of the technology to help 
them set up their own business or even continue do the “job” in a do-it-yourself 
hobby-mode of work.  The rise of low cost digital workers may make it easier for 
the long-tail of hobbies in society to develop into sole-proprietorship businesses 
(Aubrey, 2010).  This trend might be accelerated by basic income guarantees, 
and a number of nations have begun such experiments (Widerquist & Lewis 
2005).  Mixes of biological-digital cognitive systems could be facilitated both by 
low cost digital workers, technology-augmented human resources readily 
available because of basic income guarantee, and other biological species with 
augmented capabilities.  A wider range of service systems than exist today will 
likely result. 

AUGMENTING INTELLIGENCE 

The foregoing sets the stage for our main argument.  In many situations, AI will 
be used to augment human intelligence, rather than being deployed to automate 
intelligence and replace humans.  What functions are needed to augment 
intelligence? 

Information Management 

One function will be information management (Rouse, 2007).  This involves 
information selection (what to present) and scheduling (when to present it). 
Information modality selection involves choosing among visual, auditory, and 
tactile channels.  Information formatting concerns choosing the best levels of 
abstraction (concept) and aggregation (detail) for the tasks at hand.  Artificial 
intelligence can be used to make all these choices in real time as the human is 
pursuing the tasks of interest. 

Intent Inferencing 

Another function is intent inferencing (Rouse, 2007).  Information management 
can be more helpful if it knows both what humans are doing and what they intend 
to do.  Representing humans’ task structure in terms of goals, plans, and scripts 
(Schank & Abelson, 1977) can enable making such inferences.  Scripts are 
sequences of actions to which are connected information and control 
requirements.  When the intelligence infers what you intend to do, it then knows 
what information you need and what controls you want to execute it. 

One of the reasons that humans are often included in systems is because they 
can deal with ambiguity and figure out what to do.  Occasionally, what they 



decide to do has potentially unfortunate consequences.  In such cases, “human 
errors” are reported.  Errors in themselves are not the problem.  The 
consequences are the problem. 

Error Tolerant Interfaces 

For this reason, another function is an error tolerant interface (Rouse & Morris, 
1987; Rouse, 2007).  This requires capabilities to identify and classify errors, 
which are defined as actions that do not make sense (commissions) or the lack 
of actions (omissions) that seem warranted at the time.  Identification and 
classification lead to remediation.  This occurs at three levels: monitoring, 
feedback, and control.  Monitoring involves collection of more evidence to 
support the error assessment.  Feedback involves making sure the humans 
realize what they just did.  This usually results in humans immediately correcting 
their errors.  Control involves the automation taking over, e.g., applying the 
brakes, to avoid the imminent consequences. 

Adaptive Aiding 

The notion of taking control raises the overall issue of whether humans or 
computers should perform particular tasks.  There are many cases where the 
answer is situation dependent.  Thus, this function is termed adaptive aiding 
(Rouse, 1988, 2007).  The overall concept is to have mechanisms that enable 
real time determination of who should be in control.  Such mechanisms have 
been researched extensively, resulting in a framework for design that includes 
principles of adaptation and principles of interaction.  A First Law of Adaptive 
Aiding has been proposed – computers can take tasks, but they cannot give 
them. 

Intelligent Tutoring 

Another function is intelligent tutoring to both train humans and keep them 
sufficiently in the loop to enable successful human task performance when 
needed.  Training usually addresses two questions: 1) How the system works 
and, 2) How to work the system.  Keeping humans in the loop addresses 
maintaining competence.  Unless tasks can be automated to perfection, humans’ 
competencies need to be maintained.  Not surprisingly, this often results in 
training vs. aiding tradeoffs, for which guidance has been developed (Rouse, 
2007). 

Example Applications 

Many of the earlier research and applications of the notions elaborated in this 
section focused on operation and maintenance of complex engineered systems 
such as aircraft, power plants, and factories.  The tasks associated with such 
systems are usually well understood.  One application focused on electronic 
checklists for aircraft pilots (Rouse & Rouse, 1980; Rouse, Rouse & Hammer, 



1982; Rouse, 2007).  The results were sufficiently compelling to motivate 
inclusion of some of the functionality on the Boeing 777 aircraft.   

A conceptual architecture for intelligent interfaces has been developed and 
applied several times to tasks that are sufficiently structured to be able to make 
the inferences needed to support the functionality outlined here (Rouse, Geddes 
& Curry, 1988; Rouse, Geddes & Hammer, 1990; Rouse, 2007).  The notion of 
augmented intelligence can build on this foundation, with some important 
extensions due to advances in contemporary AI. 

OVERALL ARCHITECTURE 

Figure 2 provides an overall architecture for augmenting intelligence.  The 
intelligent interface, summarized above, becomes a component in this broader 
concept.  The overall logic is as follows: 

• Humans see displays and controls, and decide and act.  Humans need not be 
concerned with other than these three elements of the architecture.  The 
overall system frames human’s roles and tasks, and provides support 
accordingly. 

• The intent inference function infers what task(s) humans intend to do. This 
function retrieves information and control needs for these task(s). The 
information management function determines displays and controls 
appropriate for meeting information and control needs 

• The intelligent tutoring function infers humans’ knowledge and skill deficits 
relative to these task(s).  If humans cannot perform the task(s) acceptably, 
the information management function either provides just-in-time training or 
informs adaptive aiding (see below) of the humans’ need for aiding. 

• Deep learning neural nets provide recommended actions and decisions. The 
explanation management function provides explanations of these 
recommendations to the extent that explanations are requested.  This 
function is elaborated below. 

• The adaptive aiding function, within the intelligent interface, determines the 
human’s role in execution.  This can range from manual to automatic control, 
with execution typically involving somewhere between these extremes.  The 
error monitoring function, within the intelligent interface, detects, classifies 
and remediates anomalies. 

Note that these functions influence each other.  For example, if adaptive aiding 
determines that humans should perform task(s), intelligent tutoring assesses 
availability of necessary knowledge and skills, and determines training 
interventions needed, and information management provides the tutoring 
experiences to augment knowledge and skills.  On the other hand, if adaptive 
aiding determines that automation should perform task(s), intelligent tutoring 
assesses humans’ abilities to monitor automation, assuming such monitoring is 
needed. 



 

Figure 2. Overall Architecture of Augmented Intelligence 

Explanation Management 

As discussed in the Introduction, neural network models cannot explain their 
(recommended) decisions.  This would seem to be a fundamental limitation.  
However, science has long addressed the need to understand systems that 
cannot explain their own behaviors.  Experimental methods are used to develop 
statistical models of input-output relationships.  Applying these methods to neural 
network models can yield mathematical models that enable explaining the 
(recommended) decisions as shown in Figure 3. 

Given a set of independent variables X, a statistical experiment can be designed, 
e.g., a fractional factorial design, that determines the combinations of values of X 
to be input to the neural net model(s).  These models, typically multi-layered, 
have “learned” from exposure to massive data lakes with labeled instances of 
true positives, and possibly false positives and false negatives.  True negatives 
are the remaining instances. 

The neural net models yield decisions, D, in response to the designed 
combinations of X.  A model D(X), is then fit to these input-output data sets.  
Explanation generation then yields explanations E(D) based on the attributes and 
weights in the fitted model.  The result is a first-order, i.e., non-deep, explanation 
of the neural net (recommended) decisions. 

Domain		
Model	

Decision	
Maker(s)	

Displays	&	
Controls	

Ac8ons	&	
Decisions	

Intent	
Inference	

Intelligent	
Interface	

Ac8on	
Systems	

Explana8on	
Management	

Neural	Net	
Model(s)	

Knowledge	&	
Skills	Needed	

Knowledge	&	
Skills	Deficit	

Tutoring	
Management	



 

Figure 3. Explanation Management Function 

As noted earlier, the paradigm underlying Figure 3 is the standard paradigm of 
empirical natural science.  Thus, it is clear it will work, i.e., yield rule-based 
explanations, but will it be sufficient to help decision makers understand and 
accept what the machine learning recommends?  We imagine this will depend on 
the application. 

As an example, consider control theory.  Optimal stochastic control theory 
includes both optimal estimation and optimal control.   Determining the optimal 
solution across both estimation and control involves rather sophisticated 
mathematics.  We could apply the method in Figure 3 to the optimal control 
actions resulting from the solution of this stochastic control problem.   

We would not be able to infer the nature of the underlying sophisticated 
mathematics.  Instead, we would likely unearth something akin to classic PID 
controllers, where the acronym stands for proportional, integral, and derivative 
attributes of the errors between desired and actual states.  It has been shown 
that this provides a reasonable explanation of optimal control actions. 

Learning Loops 

Figures 2 and 3 include both explicit and implicit learning loops.  The statistical 
machine-learning loop will be continually refining the relationships in its layers, 
either by supervised learning or reinforcement learning.  This will involve 
balancing exploration (of uncharted territory) and exploitation (of current 
knowledge). This may involve human designers and experimenters not included 
in Figures 2 and 3.  Of particular interest is how machine learning will forget older 



data and examples that are not longer relevant, e.g., a health treatment that has 
more recently been shown to be ineffective. 

The rule-based learning loops in Figures 2 and 3 are concerned with inferring 
rule-based explanations of the recommendations resulting from machine learning 
(Figure 3) and inferring human decision makers’ intentions and state of 
knowledge (Figure 2).  Further, learning by decision makers is facilitated by the 
tutoring function in Figure 2. 

Thus, the AI will be learning about phenomena, cues, decisions, actions, etc. in 
the overall task environment. The decision makers will learn about what the AI is 
learning, expressed in more readily understandable rule-based forms.  The 
intelligent support system will be learning about the decision makers’ intentions, 
information needs, etc., as well as influencing what the decision makers learn. 

THREE SCENARIOS 

Given the foregoing discussion of intelligent interfaces and an architecture for 
augmenting intelligence, this section illustrates additional challenges in creating 
and deploying such systems. 

Human Interactions With Driverless Cars 

The dominant perspective on driverless cars is that these technology-intensive 
vehicles will be sufficiently expensive that most people will be reluctant to buy 
them and instead will use car services for their transportation needs (Liu, 2017).  
Thus, it will be like using Uber or Lyft without a human driver.  In theory at least, 
such services will be flawless, economically benefit both passengers and society, 
and will completely eliminate accidents. 

This may be true eventually, but the transition will be extended over decades.  
During that transition, there will be flaws in the service and occasional accidents.  
Humans will have to intervene or least want to intervene to ask the question, 
“Why are you going this way; that’s not where I want to go?”  How can a 
driverless car explain itself in response to this question? 

We outlined a computational approach in the previous section.  The explanations 
potentially feasible with this approach will have to be integrated into an overall 
customer experience that allows for different languages and varying levels of 
comfort with technology.  In other words, the driverless car will need an 
understanding of the passenger, not just alternative routes between A and B. 

Medical Diagnosis & Treatment 

There have long been prognostications that AI can enhance medical diagnosis 
and treatment, starting perhaps with MYCIN (Shortliffe & Buchanan, 1975).  
Much more recently, IBM’s Watson has been targeted to enhance diagnosis and 



treatment (Galeon & Hauser, 2016).  Undoubtedly, this technology will continually 
improve. 

However, will it ever replace human diagnosticians?  Perhaps it will in tasks 
involving complex pattern recognition.  However, there is a difference been a 
radiology scan and the patient, between the sensed pattern and the whole 
human.  This could lead to questions like, “Why do you expect this intervention 
protocol will succeed? This patient has had a negative reaction to elements of 
this in the past. 

I can imagine the system responding that it was unaware of the previous effects 
of the intervention in question.  Certainly, a lack of complete knowledge is not 
uncommon, e.g., Boodman (2017).  Given a vast amount of information, an AI 
system can probably digest the full corpus better than a human, but humans are 
very good at looking at a result and concluding that it does not make sense.  The 
implication is that the explanation management function in Figures 1 and 2 will 
need capabilities for dialog with the humans it is augmenting. 

Insurance Underwriting 

Insurance underwriting is an important part of the process associated with any 
insurance application. When someone applies for insurance coverage, they are 
requesting the insurance company to assume the potential risk of having to pay a 
claim in the future.  The level of risk assessed determines the premium charged. 

The factors considered depend on the type of insurance.  For example, age, type 
of car, and driving record affect risks for auto insurance; age, use of tobacco and 
alcohol and health records affect risks for life insurance.  Insurance companies 
have enormous data sets that they use to project such risks.  With the maturity of 
machine learning, automated insurance underwriting seems to be quickly 
maturing as well (Batty & Kroll, 2009). 

It is easy to imagine automated and human underwriting conflicting.  Upon 
seeing the AI recommendation, the human might respond,  “Why are you pricing 
this enormous risk so cheaply?  This customer has a questionable history of 
claims.”  Since the AI recommendation is based on much more data than the 
human could ever digest, it is quite likely that, in this case, the human is wrong. 

The explanation management function can provide an answer in terms of the 
data sets used to inform choices and the relative importance of different 
elements of these data sets.  However, what if the human simply disagrees?  
The intelligent tutoring function might play a role to adjudicate this conflict.  Error 
monitoring might get involved if the human insists on making a bad decision.  
This runs the risk that the human will feel that they have no choice but agree with 
the AI.  That perception could undermine the symbiosis intended. 

Paths to Transformation 



How will AI transform enterprises?  We expect that two scenarios – incremental 
change and breakthrough change -- will bound the course of transformation.  
Incremental change is the norm and is clearly evident for healthcare (Accenture, 
2017), automobiles (Plungis, 2017; Liu, 2017), and insurance (Batty & Kroll, 
2009).  For example, the sensing and control technologies that will enable 
driverless cars are being increasingly deployed on current vehicles.  The last 
steps to automated driving may not seen so radical after people have become 
comfortable with the ongoing stream of technological innovations. 

In healthcare, AI and analytics are increasingly augmenting many tasks.  We do 
not, by any means, expect this will incrementally lead to clinician-less healthcare.  
Instead, clinicians will increasingly value and rely upon augmentation, while 
retaining the central role of clinician-patient interaction.  The range of data, 
information, and knowledge available to support these interactions will continually 
grow.  For example, “precision oncology” will increasingly enable tailoring 
treatment to individual cancer patients (Grossmueller, 2017).  As another 
example, clinical decision support will help identify patients in need of advanced 
heart failure therapies (Evans, et al., 2017) 

Breakthrough change is less common.  Innovations like electricity took many 
decades before it was available to the majority of citizens in the US.  Radio and 
television were adopted much more quickly because the electrical infrastructure 
was in place.  Similarly, wireless communications networks slowly became 
pervasive, enabling much more rapid adoption of portable digital devices, 
epitomized by the iPhone.  

Infrastructure dependencies have an enormous effect. The physical infrastructure 
needed for driverless cars will hinder pervasive change for decades. The 
integrated information infrastructure needed to transform healthcare delivery is 
currently being pursued, which should enable much faster adoption of AI 
augmented clinician and patient support systems. 

The information infrastructure needed to enable augmented insurance 
underwriting is much more under the control of individual companies.  This will 
enable much faster change.  Such change is more likely to be on the 
breakthrough end of the continuum.  It is easy to imagine a single human 
underwriter managing a team of AI underwriters, both to spot anomalies and to 
continually train these team members. 

What are the workforce implications, as AI inventions become market 
innovations?  There is a wide range of commentators on this question.  There 
seems to be agreement that many jobs currently performed by humans will 
disappear, e.g., routine cognitive jobs (Cross, 2017; Paquette, 2017).  Non-
routine jobs, and those requiring non-repetitive physical dexterity, are less likely 
to be automated (Englebert & Hagel, 2017).  Jobs involving designing, 
developing, and managing AI systems are already experiencing very strong 
demand. 



Arthur (2017) argues that this will eventually result in a transition from a 
production economy to a distributive economy.  We will have all the products and 
services we need without employing all of our citizenry.  We will then have to 
concern ourselves with the rationale and finances for the distribution of goods 
and services to those not involved in production.  This could be a blessing or 
curse, depending on how creatively we address it. 

PROSPECTS FOR INNOVATION 

Many impressive innovations have been developed and deployed over the past 
20-30 tears.  A variety of valuable innovations are soon to come.  However, there 
are quite a few abilities that we do not see computers gaining in the foreseeable 
future. 

What Can We Do Now? 

AI is well developed and has matured to accomplish many tasks: 

• Retrieving, aggregating and analyzing large numeric, alphabetic, and image 
data sets 

• Recognizing pictures and speech, recognizing patterns in large data sets, 
both with training 

• Problem solving for well-structured tasks, e.g., mathematics, puzzle-like 
games, troubleshooting 

• Robotic storage, retrieval, and manipulation of materials in well-structured 
environments such as warehouses and factories 

This is not an inconsequential set of abilities and applications; they have already 
revolutionized the workplace. 

What Will We Surely Be Able to Do Soon? 

Several capabilities are in development and evaluation and are likely to soon be 
commercially viable: 

• Recognizing and analyzing pictures, voice, and video in noisy environments 
and ambiguous situations 

• Understanding and generating natural language, but perhaps not in informal 
casual situations, e.g., will not deal well with “How was your weekend?” 

• Flawlessly driving vehicles within well-defined environments supported by 
relevant infrastructure 

• Summarizing all that is known about a particular topic, e.g., causes and 
treatments of diabetes 

These abilities represent significant advances over what we can do now. 

What Are We Unlikely to Ever Be Able to Do? 



Several human capacities will be difficult to realize in the foreseeable future: 

• Computers taking responsibility for things for which they were not designed 
and are not responsible, e.g., the factory worker who is injured 

• Computers having consciousness and being capable of reflection, e.g., 
regarding their own capabilities and responsibilities 

• Computers having feelings, especially feelings rooted in suffering, without 
faking them, e.g., experiencing a good, bad, happy, sad, relaxing or stressful 
day 

• Computers enjoying seeing a friend’s face, or the feeling of rain or snow, or 
the smell of fresh cut grass or wood burning in a fireplace 

These essentially human capacities very much relate to our being animals in a 
physical, behavioral, and social world. 

CONCLUSIONS 

This article summarized the evolution of artificial intelligence (AI), including 
contemporary AI and the new capabilities now possible.  This led to 
consideration of functional requirements to augment human intelligence.  An 
overall architecture was presented for providing this functionality, including how it 
will make deep learning explainable to decision makers.  Three case studies 
were addressed – driverless cars, medical diagnosis, and insurance underwriting.  
Prospects for innovation were considered in terms of what we can now do, what 
we surely will be able to do soon, and what we are unlikely to ever be able to do. 

What can be concluded from the perspective presented in this article?  Very 
pragmatically, we might argue for automating routine, regular tasks; and 
augmenting non-routine, irregular tasks.  Either way, given prevailing values and 
norms, we have to conclude that responsibility, for both automation and 
augmentation, remains with humans.   This responsibility includes deciding what 
to work on next (Brynjolfsson & McAfee, 2017): 

“We think the biggest and most important opportunities for human smarts in this new age 
of super powerful ML lie at the intersection of two areas: figuring out what problems to 
work on next, and persuading a lot of people to tackle them and go along with the 
solutions.” 

The humans are likely to always retain decisions to take responsibility for the 
consequences of agreeing or disagreeing with other people on what is important 
to do next together. 
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